2 00 5 The quantum algebra U q ( sl 2 ) and its equitable presentation ∗

نویسندگان

  • Tatsuro Ito
  • Paul Terwilliger
  • Chih-wen Weng
چکیده

We show that the quantum algebra Uq(sl2) has a presentation with generators x±1, y, z and relations xx−1 = x−1x = 1, qxy − q−1yx q − q−1 = 1, qyz − q−1zy q − q−1 = 1, qzx − q−1xz q − q−1 = 1. We call this the equitable presentation. We show that y (resp. z) is not invertible in Uq(sl2) by displaying an infinite dimensional Uq(sl2)-module that contains a nonzero null vector for y (resp. z). We consider finite dimensional Uq(sl2)-modules under the assumption that q is not a root of 1 and char(K) 6= 2, where K is the underlying field. We show that y and z are invertible on each finite dimensional Uq(sl2)-module. We display a linear operator Ω that acts on finite dimensional Uq(sl2)-modules, and satisfies ΩxΩ = y, ΩyΩ = z, ΩzΩ = x on these modules. We define Ω using the q-exponential function. 1 The algebra Uq(sl2) Let K denote a field and let q denote a nonzero scalar in K such that q 6= 1. For an integer n we define [n] = q − q q − q−1 and for n ≥ 0 we define [n] = [n][n− 1] · · · [2][1]. We interpret [0] = 1. We now recall the quantum algebra Uq(sl2). ∗

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The two parameter quantum groups‎ ‎$U_{r,s}(mathfrak{g})$ associated to generalized Kac-Moody algebra‎ ‎and their equitable presentation

We construct a family of two parameter quantum grou-\ps‎ ‎$U_{r,s}(mathfrak{g})$ associated with a generalized Kac-Moody‎ ‎algebra corresponding to symmetrizable admissible Borcherds Cartan‎ ‎matrix‎. ‎We also construct the $textbf{A}$-form $U_{textbf{A}}$ and‎ ‎the classical limit of $U_{r,s}(mathfrak{g})$‎. ‎Furthermore‎, ‎we‎ ‎display the equitable presentation for a subalgebra‎ ‎$U_{r...

متن کامل

O ct 2 00 0 QUANTUM DIFFERENTIAL OPERATORS ON THE QUANTUM PLANE

The universal enveloping algebra U (G) of a Lie algebra G acts on its representation ring R through D(R), the ring of differential operators on R. A quantised universal enveloping algebra (or quantum group) is a deformation of a universal enveloping algebra and acts not through the differential operators of its representation ring but through the quantised differential operators of its represen...

متن کامل

Free Boson Representation of U q ( ŝl 2 )

A representation of the quantum affine algebra U q (ˆ sl 2) of an arbitrary level k is realized in terms of three boson fields, whose q → 1 limit becomes the Wakimoto representation. An analogue of the screening current is also obtained. It commutes with the action of U q (ˆ sl 2) modulo total difference of some fields.

متن کامل

MULTIPARAMETER DEFORMATIONS OF THE ALGEBRA gl n IN TERMS OF ANYONIC OSCILLATORS

Generators of multiparameter deformations U q;s 1 ,s 2 ,...,s n−1 (gl n) of the universal enveloping algebra U (gl n) are realized bilinearly by means of appropriately generalized form of anyonic oscillators (AOs). This modification takes into account the parameters s 1 , ..., s n−1 and yields usual AOs when all the s i are set equal to unity. 1. Introduction. Various aspects of quantum groups ...

متن کامل

0 Quantum Differential Operators on the Quantum Plane

The universal enveloping algebra U (G) of a Lie algebra G acts on its representation ring R through D(R), the ring of differential operators on R. A quantised universal enveloping algebra (or quantum group) is a deformation of a universal enveloping algebra and acts not through the differential operators of its representation ring but through the quantised differential operators of its represen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008